
Packet Ship Streamline
Media Server

Application Note
AN-SL-601

v.3.1.2

Controlling & Observing
Packet Ship Streamline behaviour

with XML Messages

Documents PS-SL-3.1.2 “Antigua” Update 2 release

CONFIDENTIAL

Provided subject to terms of
NDA and/or Reseller Agreement

Not for release to end customers

Copyright © Packet Ship Technologies Limited 2005-2011
All Rights Reserved

Packet Ship Application Note AN-SL-601: Streamline XML Messaging

Contents

Introduction.... 3

SOAP over HTTP..3

XMLMesh architecture..4
Subjects & Subscription... 4

Request & Response.. 5

Message Bodies... 5

ps-streamd Configurat ion.... 6

Enabling SOAP over HTTP..6

Enabling XMLMesh..6
Enabling stream notifications.. 6

Enabling external access verification... 7

Configuring message handlers..7

Message handlers ... 9
Message handler: stream-start...9

Response: <ps:stream-start-response>..9

Message Handler: stream-control..10

Message Handler: stream-status..11
Response: <ps:stream-status-response>...11

Message Handler: stream-stop..12
Message Handler: server-status...12

Response: <ps:server-status-response>..12

Message Handler: server-control...14

Outgoing messages 15

Notification: <ps:stream-notification>...15

Request: <ps:stream-verify-request>..15

XMLMesh Message Interfaces 17

The ot-xmlmesh-cli package..17

Sending messages with ot-xmlmesh-send..17
Sending simple one-way messages.. 18

Sending a simple request... 18

Sending a request and receiving the response...18

Receiving messages with ot-xmlmesh-receive...19

Need more?...19

Copyright © Packet Ship Technologies Limited 2006-2011 CONFIDENTIAL Page 2

Packet Ship Application Note AN-SL-601: Streamline XML Messaging

Introduction

The Packet Ship Streamline video server, ps-streamd, provides two messaging interfaces allowing
the server to be integrated with external systems:

1. A standard document-based SOAP-over-HTTP interface

2. A peer-to-peer messaging bus interface using the ObTools XMLMesh bus

The functions of the messaging interface include:

• Stream start (setup) and stop (teardown)

• Stream playback control

• Current stream state and position

• Admission control status

• List of all running streams

• Server shutdown and configuration reload

• External access verification *

• Notification of stream start, stop and end *

The features marked * require messages to be initiated by the server and can only be accessed
through XMLMesh.

This Application Note describes how external applications can integrate with Streamline through
both of these mechanisms.

SOAP over HTTP

The simplest way to integrate with Streamline from most languages is the standard SOAP over
HTTP interface. This is a document-based API (not SOAP RPC) running on a standard HTTP
server configured in the <soap> controller in streamd.cfg.xml:

 <soap>
 <http>
 <server port="55480" address="localhost"/>
 </http>
 </soap>

The messages are POSTed to the HTTP server with a configurable URL for each type of message.
The requests must be in SOAP format, although only the <env:Body> part is used. For example:

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
 <env:Body>
 <ps:stream-start-request xmlns:ps=”http://packetship.com/ns”
 asset = “test” output = “udp”>
 <ps:destination address=”225.1.1.1” port=”11111”/>
 </ps:stream-start-request>
 </env:Body>
</env:Envelope>

Copyright © Packet Ship Technologies Limited 2006-2011 CONFIDENTIAL Page 3

Packet Ship Application Note AN-SL-601: Streamline XML Messaging

The ‘ps:’ namespace is standard for all Packet Ship messages, and is assumed even if no xmlns

attribute is given.

The response may be a full document:

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
 <env:Body>
 <ps:stream-start-response xmlns:ps=”http://packetship.com/ns”
 id = ”c8e62773b04931730006” />
 </env:Body>
</env:Envelope>

or for simple requests that either succeed or fail, a simple <ps:ok/> element:

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
 <env:Body>
 <ps:ok/>
 </env:Body>
</env:Envelope>

In either case, any errors are returned as a SOAP fault:

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
 <env:Body>
 <env:Fault>
 <env:Code env:Value=”env:Sender”/>

 <env:Reason xmlns:xml=”http://www.w3.org/XML/1998/namespace”
 <env:Text xml:lang=”en”>No such stream</env:Text>
 </env:Reason>
 </env:Fault>
 </env:Body>
</env:Envelope>

XMLMesh architecture

The ObTools XMLMesh message bus is a ‘middleware’ application which allows independent
components, either on the same machine or on different ones, to communicate with XML messages
on a publish-subscribe basis. Unlike a traditional Remote Procedure Call (RPC) system such as
CORBA or Java RMI, a message is not directed at any particular receiver, but it sent out with a
subject which one or more receivers may choose to subscribe to, act upon, and reply to.

Subjects & Subscription

Each XMLMesh message has a textual subject which by convention is split up into words separated
by dots, like a reverse domain name, or Java package name. To avoid clashes, it is recommended
that the messages begin with the sender’s reversed domain name, with the allowance that ‘.com’ can
be left out: Hence all Packet Ship messages begin “packetship.”, and all messages to do with
streaming are prefixed with “packetship.stream.” To begin receiving messages, clients attach

to the XMLMesh at a well-known TCP port, and request a subscription to a given subject pattern.
The pattern can be expressed as a standard ‘glob’ pattern, such as “packetship.*”. This pattern

would receive every single Packet Ship message which passed through the system: Probably
overkill, but interesting to try!

Copyright © Packet Ship Technologies Limited 2006-2011 CONFIDENTIAL Page 4

Packet Ship Application Note AN-SL-601: Streamline XML Messaging

Request & Response

Messages can be sent and received in a one-way ‘fire and forget’ metaphor, or with a more
conventional request/response. Each message has an ID, and an ‘RSVP’ flag which says whether or
not a reply is expected. A receiver can simply respond to a message by sending back a reply quoting
the request’s ID.

Note that it is quite possible for more than one receiver to subscribe to a request, but only the first
one to reply will have its reply forwarded back to the sender. However, as we shall see, the others
can observe what is going on without having to reply.

Message Bodies

The XMLMesh bus uses the full SOAP <env:Header> format for internal routing, but this is hidden
from developers using any of the standard language bindings (C, C++, PHP, Java). The actual
messages sent are identical to the SOAP over HTTP ones, except that success for simple messages is
indicated by an <x:ok/> element.

Copyright © Packet Ship Technologies Limited 2006-2011 CONFIDENTIAL Page 5

Packet Ship Application Note AN-SL-601: Streamline XML Messaging

ps-streamd Configuration

In order to provide the messaging services described in this Application Note, the
streamd.cfg.xml configuration will need to be changed from the default as supplied. The

Streamline Installation and Configuration Guide (SL-ICG) gives full details.

Enabling SOAP over HTTP

The SOAP HTTP server is disabled by default and needs to be given a port number to listen on in

order to enable it:

 <soap>
 <http>
 <server port="55480" address="localhost"/>
 </http>
 ...
 </soap>

With address set to “localhost” it will only listen on the local interface ('lo'). To enable
connections from outside you can either specify a specific interface IP address or “0.0.0.0” to

listen on all interfaces.

Note: The SOAP interface is not authenticated so be very careful if this interface is opened up
beyond the local machine – or even within the machine, if it has untrusted users.

Enabling XMLMesh

The XMLMesh interface is also configured within the <soap> controller. The <xmlmesh>

element and contents need to be un-commented:

 <soap>
 …
 <xmlmesh>
 <server host="localhost" port="29167"/>
 <notify end="no"/>
 </xmlmesh>
 …
 </soap>

The host and port are the address of the XMLMesh broker (ot-xmlmesh) to connect to. 29167

is the standard XMLMesh port ('otmp') and by default it is running on the same server.

Enabling stream notifications

One of the features of the XMLMesh interface is that it can send notifications of streams starting,
stopping (explicit stop), ending (naturally) and failing (other cause) to the external controller. To
enable this, set <notifications enabled=”yes”/> inside <xmlmesh>.

Copyright © Packet Ship Technologies Limited 2006-2011 CONFIDENTIAL Page 6

Packet Ship Application Note AN-SL-601: Streamline XML Messaging

Enabling external access verification

The Admission Controller can also use XMLMesh to request external verification of a stream
request, for example from an external subscriber management system. To enable this, uncomment
the <external> element in <admission>:

 <admission>
 …
 <external/>
 …
 </admission>

Configuring message handlers

The server's SOAP controller provides a number of message handlers, each providing a different
function. These can be 'bound' to particular HTTP URLs and/or XMLMesh message subjects. If a
handler is not bound on one or both of the channels, then it is disabled.

The message bindings are defined in a <messages> element within the <soap> element. Each

child element of this defines a message handler by name.

Handler name Message type

<stream-start> <ps:stream-start-request>

<stream-control> <ps:stream-control-request>

<stream-status> <ps:stream-status-request>

<stream-stop> <ps:stream-stop-request>

<stream-server-status> <ps:stream-server-status-request>

The function and syntax of each message handler is described later in this document.

HTTP URL bindings

Each message handler can be bound to a particular HTTP URL with a <soap> element inside the
handler element. The url attribute gives the URL (or URL glob pattern) to bind to. For example:

<soap>
 ...
 <messages>
 ...
 <stream-status>
 <soap url=”/status”/>
 </stream-status>
 ...
 </messages>
 ...
</soap>

Copyright © Packet Ship Technologies Limited 2006-2011 CONFIDENTIAL Page 7

Packet Ship Application Note AN-SL-601: Streamline XML Messaging

XMLMesh subject bindings

Each message handler can also be bound to a particular XMLMesh subject pattern with an
<xmlmesh> element inside the handler element. The subject attribute gives the message subject
(or subject glob pattern) to bind to, minus the final “.request” which is added automatically. For

example:

<soap>
 ...
 <messages>
 ...
 <server-status>
 <xmlmesh subject="packetship.stream.server.status"/>
 </server-status>
 ...
 </messages>
 ...
</soap>

Copyright © Packet Ship Technologies Limited 2006-2011 CONFIDENTIAL Page 8

Packet Ship Application Note AN-SL-601: Streamline XML Messaging

Message handlers

The following section outlines the format and function of each of the message handlers.

Message handler: stream-start

Standard SOAP URL: /start

Standard XMLMesh subject: packetship.stream.start.request

The stream start message is the most fundamental, and requests the server to start a stream for a
given asset to one or more destinations.

The body of the message must be a <ps:stream-start-request> element, with the following

attributes:

• The asset gives the asset ID to be used, as looked up in the server's asset directory.

• The output gives the output ID to be used – e.g. “udp”or “rtp-udp” (note TCP outputs are

not usable with externally initiated streams because they require a pre-existing client
connection)

Then within the <ps:stream-start-request> can be placed one or more <ps:destination>

elements with the following attributes:

• The address identifies the IP address of the receiving device for the stream, and should be

in dotted-quad notation

• The port gives the receiver’s UDP port number for the stream, in decimal

For example:

<ps:stream-start-request xmlns:ps=”http://packetship.com/ns”
 asset = “test” output = “udp”>
 <ps:destination address=”225.1.1.1” port=”11111”/>
</ps:stream-start-request>

Response: <ps:stream-start-response>

The response to a <ps:stream-start-request> should be a <ps:stream-start-
response> message or a SOAP fault message.

The <ps:stream-start-response> element has a single attribute:

• The id is the server's ID for the session, which should be quoted in further requests for this

stream.

For example:

<ps:stream-start-response xmlns:ps=”http://packetship.com/ns”
 id = ”c8e62773b04931730006”
/>

Copyright © Packet Ship Technologies Limited 2006-2011 CONFIDENTIAL Page 9

Packet Ship Application Note AN-SL-601: Streamline XML Messaging

Message Handler: stream-control

Standard SOAP URL: /control

Standard XMLMesh subject: packetship.stream.control.request

All stream controls such as pause, play, fast-forward and rewind are handled by the same message
handler. The body of the message must be a <ps:stream-control-request> element, with

the following attributes:

• The id is the ID of the stream returned in the start response

• The speed attribute gives the speed of playback, as a decimal

Speed Action
0 Pause
1.0 Play normally
< 0 Rewind
> 1.0 Fast forward

The speed attribute can be left out, in which case 1.0 (normal play) is assumed.

• The offset attribute gives the offset to play at, in decimal seconds of Normal Play Time

(NPT). If left out, -1.0 is assumed, which indicates ‘continue from here, or from start’.

• The end attribute gives the offset to stop the stream at, in NPT seconds. If set to “0”, this

indicates play to the natural end of the stream. If left out, -1.0 is assumed, which means
“leave it as it was before”.

Control requests are also used as ‘keepalive’ requests for running streams with just an ID attribute.
Note that external controllers have to provide keepalives just as clients do, unless the keepalive
timeout is disabled.

For example (a pause request):

<ps:stream-control-request xmlns:ps=”http://packetship.com/ns”
 id = ”c8e62773b04931730006”
 speed = ”0”
/>

The result of a control request is just a basic <ps:ok/> (SOAP) or <x:ok/> (XMLMesh) message,

or a SOAP fault if the stream ID doesn't exist.

Copyright © Packet Ship Technologies Limited 2006-2011 CONFIDENTIAL Page 10

Packet Ship Application Note AN-SL-601: Streamline XML Messaging

Message Handler: stream-status

Standard SOAP URL: /status

Standard XMLMesh subject: packetship.stream.status.request

The stream request allows an external controller to obtain the current state and position of any
stream (not just ones it started itself) – for example to bookmark videos for later resumption. The
body of the message must be a <ps:stream-status-request> element, with a single id

attribute giving the stream ID.

For example:

<ps:stream-status-request xmlns:ps=”http://packetship.com/ns”
 id = ”c8e62773b04931730006”
/>

Response: <ps:stream-status-response>

The response to a <ps:stream-status-request> will be a <ps:stream-status-
response> message or a SOAP fault message. The <ps:stream-status-response>
contains a single <ps:stream> element with the following attributes:

• The id is the ID of the stream

• The asset is the asset ID being streamed

• The controller is the name of the controller that 'owns' the stream (“soap” for streams

created through this interface)

• The index is the server's internal index number for the stream

• The output is the output being used – e.g. “udp”

• The position is the current position in Normal Play Time (NPT) seconds (floating point)

• The speed is the current speed of playback

• The state is the current state of the stream, one of:

State name Meaning

starting Stream being started

playing Playing normally (at any speed)

runout Aligning to an access point before a transition

held Held at the end or beginning during fast-
forward or rewind

finishing Reached natural end, playing out from buffers

finished Reached natural end, last packet sent

notified Controllers notified of end

failed Internal failure

stopped Stopped by controller

Copyright © Packet Ship Technologies Limited 2006-2011 CONFIDENTIAL Page 11

Packet Ship Application Note AN-SL-601: Streamline XML Messaging

Within the <ps:stream> element will be a <ps:destination> element for each destination
address, containing address (dotted-quad) and port attributes.

For example:

<ps:stream-status-response xmlns:ps="http://packetship.com/ns">
 <ps:stream asset="test" controller="soap" id="c8e62773b04931730006"
index="1" output="udp" position="18.462" speed=”1” state="playing">
 <ps:destination address="225.1.1.1" port="11111"/>
 </ps:stream>
</ps:stream-status-response>

Message Handler: stream-stop

Standard SOAP URL: /stop

Standard XMLMesh subject: packetship.stream.stop.request

The stream stop request stops a stream. The body of the message must be a <ps:stream-stop-
request> element, with an id attribute being the ID of the session returned in the start response.

For example:

<ps:stream-stop-request xmlns:ps=”http://packetship.com/ns”
 id = ”c8e62773b04931730006”
/>

The result of a stop request is just a basic <ps:ok/> (SOAP) or <x:ok/> (XMLMesh) message, or

a SOAP fault.

Message Handler: server-status

Standard SOAP URL: /server-status

Standard XMLMesh subject: packetship.stream.server.status.request

The master status request is used to request a status report from the streaming daemon. The body of
the message should be a <ps:server-status-request> element, which has a single streams

attribute. If this is set to 'true', the result will include detailed reports on every stream; otherwise it
will only contain summary information.

For example:

<ps:server-status-request
xmlns:ps=”http://packetship.com/ns” streams=”true”/>

Response: <ps:server-status-response>

This message is the result of a server status request, and will contain a <ps:server-status-
response> element, containin a <ps:streams> element, giving details on all the streams in the
system (only if streams is set in the request) and a <ps:admission> element giving the

admission control status of the server.

Copyright © Packet Ship Technologies Limited 2006-2011 CONFIDENTIAL Page 12

http://packetship.com/ns

Packet Ship Application Note AN-SL-601: Streamline XML Messaging

Stream list

The <ps:streams> element is only included if the streams attribute is set in the request. It
contains a <ps:stream> element for every stream as is returned for individual stream status

requests (see above).

Admission control status

The <ps:admission> element is always present and contains information about the admission

control status of the server. It contains an element for each stateful admission control filter in the
system. In the current version this only means <capacity> filters, which create <ps:capacity>

elements.

Each <ps:capacity> element has an id attribute as configured in streamd.cfg.xml, or for
licence limits, as read from the licence file. It also contains <ps:streams> and
<ps:bandwidth> elements giving information about stream numbers and bandwidth capacity and
usage. Each of these in turn contain max and used attributes giving the maximum configured and

the current amount in use, respectively. Bandwidth is counted in megabits/second, the same way it
is configured in the <capacity> admissions filter.

If a <capacity> filter is specific to a particular network route or asset ID pattern, the
<ps:capacity> element will also have route and/or asset attributes, respectively, as

configured in streamd.cfg.xml.

Server status example

The following example shows a typical status result with a single stream:

<ps:server-status-response xmlns:ps="http://packetship.com/ns">
 <ps:streams>
 <ps:stream asset="test" controller="soap"
 id="c8e62773b04931730006" index="1" output="udp"
 position="19.79" speed="1" state="playing">
 <ps:destination address="225.1.1.1" port="11111"/>
 </ps:stream>
 </ps:streams>
 <ps:admission>
 <ps:capacity id="multicast-bandwidth" route="224.0.0.0/4">
 <ps:streams max="0" used="1"/>
 <ps:bandwidth max="50" used="4.526"/>
 </ps:capacity>
 <ps:capacity asset="test*" id="test-streams">
 <ps:streams max="10" used="1"/>
 <ps:bandwidth max="0" used="4.526"/>
 </ps:capacity>
 <ps:capacity id="licence">
 <ps:streams max="0" used="1"/>
 <ps:bandwidth max="500" used="4.526"/>
 </ps:capacity>
 </ps:admission>
</ps:server-status-response>

Copyright © Packet Ship Technologies Limited 2006-2011 CONFIDENTIAL Page 13

Packet Ship Application Note AN-SL-601: Streamline XML Messaging

Message Handler: server-control

Standard SOAP URL: /server-control

Standard XMLMesh subject: packetship.stream.server.control.request

The server control request has various effects on the server as a whole, depending on the content of
the message. The body of the message must be a <ps:server-control-request> element,

which can contain one or more of the following sub-elements:

<ps:shutdown>

If present anywhere in the message, the server is cleanly shut down and all other sub-elements are
ignored.

<ps:server-control-request xmlns:ps=”http://packetship.com/ns”>
 <ps:shutdown/>
</ps:server-control-request>

<ps:reload>

All the dynamic configuration of the server is reloaded, as if it had received a SIGHUP. If present,
other reload-type commands are ignored.

<ps:server-control-request xmlns:ps=”http://packetship.com/ns”>
 <ps:reload/>
</ps:server-control-request>

<ps:reload-directory>

Only the asset directory is reloaded.

<ps:server-control-request xmlns:ps=”http://packetship.com/ns”>
 <ps:reload-directory/>
</ps:server-control-request>

<ps:reload-controller>

The configuration of the controller identified by an id attribute is reloaded. This is usually used
with id=“permanent” to reload the permanent stream (broadcast) configuration.

<ps:server-control-request xmlns:ps=”http://packetship.com/ns”>
 <ps:reload-controller id=”permanent”/>
</ps:server-control-request>

The result of any server control request is just a basic <ps:ok/> (SOAP) or <x:ok/> (XMLMesh)

message, or a SOAP fault.

Copyright © Packet Ship Technologies Limited 2006-2011 CONFIDENTIAL Page 14

Packet Ship Application Note AN-SL-601: Streamline XML Messaging

Outgoing messages

The following messages are sent by the ps-streamd daemon to external listeners through

XMLMesh only.

Notification: <ps:stream-notification>

Whenever a stream is started, stopped, ends or fails, the video server can send a one-way
notification of the event which allows an external controller to deal with it in some way. This
applies to all streams in the server, not just those started by the SOAP controller itself.

The body of the notification message will be a <ps:stream-notification> element, with an
id attribute being the session ID, and an event attribute giving the event type, which will be one

of:

• “started”: The stream has successfully started

• “stopped”: The stream was explicitly stopped by its controller

• “ended”: The stream came to a natural end

• “failed”: The stream failed for some other reason

The message element also has the following other attributes:

• controller: The name of the controller that created the stream

• asset: The asset ID being streamed

• output: The name of the output being used.

Then for every destination there will be a <ps:destination> element with address (dotted-
quad) and port attributes.

The XMLMesh subject is constructed from the session ID as
packetship.stream.notify.<event>.<sessionID>

For example:

[packetship.stream.notify.started.bdbda1b84d60002]
<ps:stream-notification asset="test" controller="rtsp"
 event="started" id="bdbda1b84d60002" output="udp"
 xmlns:ps="http://packetship.com/ns">
 <ps:destination address="127.0.0.1" port="48612"/>
</ps:stream-notification>

There is no response to a notification.

Request: <ps:stream-verify-request>

To allow more complex security mechanisms than can be handled by the video server itself – for
example, checking billing status, the server offers a mechanism for hooking into its access
verification process. This feature is enabled by <external/> in the <admission> element of

Copyright © Packet Ship Technologies Limited 2006-2011 CONFIDENTIAL Page 15

Packet Ship Application Note AN-SL-601: Streamline XML Messaging

streamd.cfg.xml. Note that external verification can also be combined with any other kind

of admission filtering.

The message contains a <ps:stream-verify-request> element with the following

information:

● An asset attribute giving the asset ID being requested

● An output attribute giving the internal transport type (output) requested (e.g. “udp”)

● A controller attribute giving the name of the controller (e.g. “rtsp”)

Then for every destination there will be a <ps:destination> element with address (dotted-
quad) and port attributes.

The XMLMesh subject of the request is packetship.stream.verify.request

The receiver of the message should respond with either a standard XMLMesh 'ok' response, or an
XMLMesh error. If an error is returned the client will receive a “403 Forbidden” response.

For example:

[packetship.stream.access.verify]
<ps:stream-verify-request xmlns:ps="http://packetship.com/ns"
 controller=”rtsp” asset=“wotw-2” output=”udp”>
 <ps:destination client=“192.168.0.52” client-port=”11111”/>
</ps:stream-verify-request>

Copyright © Packet Ship Technologies Limited 2006-2011 CONFIDENTIAL Page 16

http://packetship.com/ns

Packet Ship Application Note AN-SL-601: Streamline XML Messaging

XMLMesh Message Interfaces

To send and receive XMLMesh messages requires a message interface to properly format the
message, connect to the bus and send and receive the message data. The XMLMesh platform
currently supports the following message interfaces:

• A native library interface in C++ (from which all the others are derived)
• A native library interface in C (sending only)
• A PHP module (sending only)
• A generic pair of command-line tools for send and receive, which can be called/called by

any scripting language such as Perl, shell or Python

Because it is the most general, this document describes the last option; using the others will be
similar but in the native syntax of the calling language.

The ot-xmlmesh-cli package

Although it is not part of the standard Packet Ship Streamline release, we can supply on request an
additional package, ‘ot-xmlmesh-cli’. This is installed just like the standard packages:

dpkg –i ot-xmlmesh-cli_1.2.0-1_i386.deb

This installs two utilities in /usr/bin/: ot-xmlmesh-send and ot-xmlmesh-receive.

Sending messages with ot-xmlmesh-send

Running ot-xmlmesh-send with no arguments provides the following usage message:

Usage:

 ot-xmlmesh-send [options] <subject> [<file>]

Reads message from <file> or stdin, and sends it with the given subject

May output response to stdout if requested

Result code 0 for success, 1 for message failure, 2 for fatal error

Options:

 -c --check Request response and check for OK, or output error to

stderr

 -r --response Request response and output body to stdout

 -s --soap Show full SOAP response (only if -r)

 -v --verbose More logging

 -q --quiet No logging, even on error

 -h --host Set XMLMesh host (default 'localhost')

 -p --port Set XMLMesh port (default 29167)

 -? --help Output this usage

Copyright © Packet Ship Technologies Limited 2006-2011 CONFIDENTIAL Page 17

Packet Ship Application Note AN-SL-601: Streamline XML Messaging

Sending simple one-way messages

In its simplest use, ot-xmlmesh-send reads an XML message from its standard input, or from a
supplied file, and sends it with the subject given on the command line. For example

$ ot-xmlmesh-send “foo.test”
<foo:test/>
[ctrl-D]

This sends the simplest possible fire-and-forget message with subject “foo.test”. However, all the
Packet Ship messages that can be sent by the RTSP daemon have a result, so we have to do a little
more…

Sending a simple request

The next step up is to request a result and check for a standard ‘OK’ response, or an error. The ‘-c’
or ‘--check’ option provides this facility, and sets its result code accordingly. It also outputs any

error to the standard error.

With this, we can send any of the stream control messages which just have a simple OK/Error
result, e.g.:

$ ot-xmlmesh-send –c “packetship.stream.stop.request”
<ps:stream-stop-request xmlns:ps=”http://packetship.com/ns”
 id = ”c8e62773b04931730006”/>
[ctrl-D]

Sending a request and receiving the response

Finally, we may want to actually receive the full response from a request which generates one. The
‘-r’ or ‘--response’ option provides this. It outputs any response it receives to standard output,
even if it’s an error (in which case it will be in the form of an <env:fault> element containing a

SOAP fault structure)

With this, we can obtain the result of a stream start message:

$ ot-xmlmesh-send –r “packetship.stream.start.request”
<ps:stream-start-request xmlns:ps=”http://packetship.com/ns”
 asset = “test” output = “udp”>
 <ps:destination address=”225.1.1.1” port=”11111”/>
</ps:stream-start-request>
[ctrl-D]
<ps:stream-start-response id = ”c8e62773b04931730006”
 xmlns:ps=”http://packetship.com/ns”/>

Copyright © Packet Ship Technologies Limited 2006-2011 CONFIDENTIAL Page 18

Packet Ship Application Note AN-SL-601: Streamline XML Messaging

Receiving messages with ot-xmlmesh-receive

To receive messages (other than responses to a request that you initiated with ot-xmlmesh-send),
you need to use the ot-xmlmesh-receive server. This runs as a permanent daemon, subscribing

to message subjects that you specify, and then spawns a copy of your script for each message
received. The best analogy is a CGI script being run by Apache.

If you run ot-xmlmesh-receive with no arguments, you get the following usage message:

Usage:

 ot-xmlmesh-receive [options] <subject> <receiver>

Runs as a daemon and subscribes for given <subject> and spawns <receiver>

for each message, with argv[1] as subject and message text on stdin.

Options:

 -o --observe Observe only, don’t return response even if requested

 -c --check Check return code of receiver and send OK or Error

 If return code is non-zero, any output will go into fault

 -r --response Return response body from output of receiver

 -R --response-subject <subject>

 Set subject of response (only when -r)

 Default is received subject with '.response' appended

 -s --soap Pass in full SOAP message wrapper

 -v --verbose More logging

 -q --quiet No logging, even on error

 -f --foreground Run in foreground rather than as a daemon

 -1 --oneshot Receive only one message and exit (default, loops forever)

 -h --host <host> Set XMLMesh host (default 'localhost')

 -p --port <port> Set XMLMesh port (default 29167)

 -? --help Output this usage

The subject given can be a pattern match, such as “packetship.stream.*”. The receiver script

is called with the actual subject of the message as the first argument, and the body of the message as
its input.

The ‘--check’ (-c) option checks the return code of the receiver and sends back a simple
OK/Error response, whereas the ‘--response’ (-r) option accepts a complete response from the

output of the script. If you are only observing notifications, and not responding to them, you only
need to use the simplest form, ‘--observe’ (-o).

Need more?

For more support and example scripts in the language of your choice, please contact
support@packetship.com and we will do our best to help you.

Copyright © Packet Ship Technologies Limited 2006-2011 CONFIDENTIAL Page 19

mailto:support@packetship.com

	Contents
	Introduction
	SOAP over HTTP
	XMLMesh architecture
	Subjects & Subscription
	Request & Response
	Message Bodies

	ps-streamd Configuration
	Enabling SOAP over HTTP
	Enabling XMLMesh
	Enabling stream notifications
	Enabling external access verification

	Configuring message handlers
	HTTP URL bindings
	XMLMesh subject bindings

	Message handlers
	Message handler: stream-start
	Response: <ps:stream-start-response>

	Message Handler: stream-control
	Message Handler: stream-status
	Response: <ps:stream-status-response>

	Message Handler: stream-stop
	Message Handler: server-status
	Response: <ps:server-status-response>
	Stream list
	Admission control status
	Server status example

	Message Handler: server-control
	<ps:shutdown>
	<ps:reload>
	<ps:reload-directory>
	<ps:reload-controller>

	Outgoing messages
	Notification: <ps:stream-notification>
	Request: <ps:stream-verify-request>

	XMLMesh Message Interfaces
	The ot-xmlmesh-cli package
	Sending messages with ot-xmlmesh-send
	Sending simple one-way messages
	Sending a simple request
	Sending a request and receiving the response

	Receiving messages with ot-xmlmesh-receive
	Need more?

